Britt Lab: DNA repair, mutagenesis, recombination, damage response, accelerated breeding

Desiccation induced DNA double strand breaks (DSBs)

CRISPR-cas9 induced DSBs: Targeted mutagenesis without tissue culture “Editit” w’ Neelima Sinha

Haploid inducing lines via mutant centromeric proteins

Anne Britt, Dept. Plant Biology, abbritt@ucdavis.edu
Why are CRISPRs revolutionizing plant breeding?

- **CRISPR/cas9** targets DNA double strand breaks and mutations to specific sequences. Thus targeted mutations can be induced without outcrossing.

- **CRISPR-generated mutations in tomato are not subject to regulation in the US.**

- **Licensing/ownership** of cas9 tech is currently a mess, but similar enzymes are in development.

- In crop plants, CRISPR/cas9 is usually introduced as a T-DNA (transgene). The transgene is then crossed out in the next generation (it is not linked to the target).
A rapid and simple method for CRISPR mutagenesis

Formerly plant breeding depended on existing randomly generated alleles

Current gene editing technologies (e.g., CRISPR) can target specific genes for mutagenesis, without affecting the rest of the genome. This process is extremely efficient in tomato.

But regenerating entire plants from single edited cells is:

- laborious
- expertise- and equipment intensive
- requires many months (4 to 24)
- for many crops/varieties impossible-

We can fix that problem- with a fast (2 mo), low-tech methodology for plant regeneration.
A bottleneck, to different degrees in different crops

- **Problem:** It’s an Art!!
- IN VITRO regeneration is slow, expensive, requires extensive experience, different for every species, and for many crops is impossible.
Our solution: EditIt

• The Editit process—so far tested only in tomato—produces heritable mutations quickly without sterile culture
• No protoplasts are involved
• The final product carries no transgenes

(Serving suggestion)
Shoots are easily/quickly regenerated in our model species (tomato)
Editing occurs frequently (10-20% of shoots)
Mutations generated are heritable, and transgene is lost in the next generation
Seed to seed generation of transgene-free mutants in 5-6 mo.
Anne Britt, Prof. Plant Biology UC Davis, *DNA repair and recombination in plants*, abbritt@ucdavis.edu, 530 752-0699

Neelima Sinha, Prof. Plant Biology UC Davis, *Plant developmental biology*, nrsinha@ucdavis.edu, 530 754-8441

Mily Ron, Research Scientist in Britt lab, *CRISPR Technology and recombinant DNA*, mron@ucdavis.edu, 530 752-9282