Managing and characterizing complex traits, including quantitative traits

Charlie Brummer

Director, Plant Breeding Center The University of California, Davis

UC Davis – Plant Breeding Center

Consolidate and update graduate plant breeding curriculum – include field based content/experience

Involve industry/commodity partners in educational programs through internships, assistantships, class visits, guest lectures....

Develop post-graduate school educational programs, coordinating with Seed Central and Plant Breeding Academy

Promote hiring of more plant breeding faculty and staff with field-based expertise

Develop useful technologies, germplasm and cultivars and actively license for commercialization

Outline

Breeding complex traits

Markers and mapping

Genomic selection

In-field phenotyping

Technology development

High-throughput prediction

and be a

21 years of markers and maps

Development of an RFLP map in diploid alfalfa

E. Charles Brummer^{1*}, Joseph H. Bouton¹, and Gary Kochert²

¹ Department of Agronomy, University of Georgia, Athens, GA 30602, USA
 ² Department of Botany, University of Georgia, Athens, GA 30602, USA

Theor Appl Genet (1993) 86:329-332

108 markers - 10 LG - 1 year

Have markers contributed to cultivar advances?

Forage cultivars developed using markers

Markers are no longer limiting

Genotyping-by-sequencing to generate saturated map in a month

Bioinformatics-intensive to manipulate sequence data

Flowering time in alfalfa

Fall dormancy in alfalfa

- Robust field-based protocol gives reliable results
- Based on well-defined check cultivars

Cultivated alfalfa germplasm structured by fall dormancy

⁽Li et al., 2014 PlosOne)

Autumn dormancy mapping

Bi-parental population

Breeding germplasm population

Predicting phenotypes with markers

Measure phenotypes on a plant population

Generate genome-wide markers and compute the effect of each marker on the trait

Select based on the sum of these affects across all markers – the Genome Estimated Breeding Value

Li & Brummer, 2012, Agronomy 2:40

Alfalfa Genomic Selection

Predict yield based on marker breeding values

NECS breeding population – Clonal selection

2 cycles, ~200 genotypes/cycle, 3-5 yield environments/cycle

GBS (Elshire protocol) 96-plex on Hi-Seq 2000 ~2 million reads/genotype rrBLUP (Endelman)

Li, Wei, Acharya, Viands, Hansen, Claessens, Brummer – unpub. Accuracy (r) within locations

	lowa	New York	Quebec
Cycle 0	0.44	0.49	0.43
Cycle 1	-	0.38	0.62
CO – C1	-	0.44	0.14

Markers for disease/insect resistance

Effective greenhouse (phenotypic) screen

Marker confirmation during breeding program

Tracking allele frequency changes

Whitefly resistance – Larry Teuber (UCD)

GBS using ~100 bulked genotypes of C-1, C+4 and C+7

>55,000 SNP loci with >100 reads/pop; mapped to Medicago

Confirmed by SNP markers on individual genotypes (Monteros)

Waiting for phenotypic data....

COLORADO: Canopy spectral reflectance (CSR) measured with a Jaz spectroradiometer

CSR measures the amount of light reflected from the plant canopy at many wavelengths

High Throughput Phenotyping (HTP)

Geo-referenced data collection

Non-destructive measurements

Fast, repeatable

Assuming good calibrations

Wheat breeding nursery, Jesse Poland, USDA-ARS, Manhattan, KS, USA

Possible Uses in Breeding

NDVI - 2012.05.10

Wheat breeding nursery, Jesse Poland, USDA-ARS, Manhattan

Predict yield before harvest Measure water, nutrient status Collect data at more locations than possible with typical trait measurements

High Throughput Phenotyping Platforms

UCD participants in HTP

- CAES
 - M. Gilbert (crop physiology), J. Ross-Ibarra (genomics), P.
 Gepts (genomics/breeding), C. Brummer (Plant Breeding Center), A. Walker (grape breeding), R. Hijmans (geospatial analysis)
- CES
 - S. Vougioukas (actuators, sensors and control systems), M.
 Delwiche (biosensors, electr instrum), Computer Sci: (data processing, large datasets, telematics)
- New positions being requested from university

Summary

<u>High-throughput genotyping</u> – available now

<u>High-throughput phenotyping</u> – predict phenotypes area of interest in many crops many questions – how well do sensors predict desired traits

Data handling

informatics to manipulate raw sequence or phenotype data data processing/analysis power data storage and retrieval