Population-Based Threshold Models Describe Effects Of Controlled Deterioration On Seed Respiratory Patterns During Germination

Pedro Bello1,2, Margarita Barros1 and Kent J. Bradford1

1 Department of Plant Sciences, University of California, Davis, USA.
2 Centor Brasil, São José do Rio Pardo, São Paulo, Brasil.

Introduction

Cellular respiration is initiated during the early stages of seed imbibition. Understanding the dynamics of seed respiration during germination provides new opportunities to optimize treatment protocols and to assess seed quality. Previous approaches to measure seed respiration have largely relied on measurements of samples containing many seeds, making it difficult to relate specific respiratory patterns to germination timing. The Q2 instrument (ASTEC Seed Technology) allows the sensitive measurement of respiration (oxygen depletion in sealed vials) by individual seeds, enabling more detailed studies of the relationships between respiration and germination rates.

Oxygen consumption profile during aging

The time required for germination increases prior to the loss of viability as seeds deteriorate during storage (1). We characterized the effects of controlled deterioration ageing on respiratory patterns of lettuce (cv. Salinas) in comparison with their germination kinetics (2). Lettuce seeds exhibited a range of oxygen consumption patterns, with some seeds having a linear rate of respiration, while other seeds present a sigmoid respiration curve. Seeds that had been primed exhibited the sigmoid pattern more frequently compared to control seeds (Figure 2B), while as ageing time increased, increasing numbers of seeds shifted from the sigmoid to the linear pattern of respiration (Figure 2D, E, F).

Population-based thresholds from respiration

Population-based threshold models have been created to quantify and predict seed germination times and percentages after ageing periods under controlled deterioration (3). However, those models rely on measurements of germination rates (timing) which are very labor-intensive as they require frequent repeated observations.

The respiratory response to ageing is consistent and highly correlated with germination. Hence, both the germination and the respiration data could be modeled using the ageing population-based threshold model (Figure 3). For lettuce, values based on seeds reaching higher levels of oxygen (i.e., R75), were more significant when using the model, with r = 0.975**.

Conclusions

- Respiratory rates determined from Q2 tests could substitute for germination rates determined by repeated observations.
- Valuable parameters can be extracted from a population-based threshold model to provide indicators of expected shelf-life.

References